Multiple Product Modulo Arbitrary Numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Product Modulo Arbitrary Numbers

Let n binary numbers of length n be given. The Boolean function ``Multiple Product'' MPn asks for (some binary representation of ) the value of their product. It has been shown (K.-Y. Siu and V. Roychowdhury, On optimal depth threshold circuits for multiplication and related problems, SIAM J. Discrete Math. 7, 285 292 (1994)) that this function can be computed in polynomial-size threshold circu...

متن کامل

Euler Numbers modulo 2

Let {En} be the Euler numbers. In the paper we give a general congruence modulo 2(m+2)n involving for Eb and for E2mk+b, where k, m, n are positive integers and b ∈ {0, 2, 4, . . .}. MSC: Primary 11B68, Secondary 11A07

متن کامل

Catalan Numbers Modulo 2 k

In this paper, we develop a systematic tool to calculate the congruences of some combinatorial numbers involving n!. Using this tool, we re-prove Kummer’s and Lucas’ theorems in a unique concept, and classify the congruences of the Catalan numbers cn (mod 64). To achieve the second goal, cn (mod 8) and cn (mod 16) are also classified. Through the approach of these three congruence problems, we ...

متن کامل

A Classification of Motzkin Numbers Modulo 8

The well-known Motzkin numbers were conjectured by Deutsch and Sagan to be nonzero modulo 8. The conjecture was first proved by Sen-Peng Eu, Shu-chung Liu and Yeong-Nan Yeh by using the factorial representation of the Catalan numbers. We present a short proof by finding a recursive formula for Motzkin numbers modulo 8. Moreover, such a recursion leads to a full classification of Motzkin numbers...

متن کامل

Fibonacci Numbers modulo Cubes of Primes

Let p be an odd prime. It is well known that Fp−( p 5 ) ≡ 0 (mod p), where {Fn}n>0 is the Fibonacci sequence and (−) is the Jacobi symbol. In this paper we show that if p 6= 5 then we may determine Fp−( p 5 ) mod p3 in the following way:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 1996

ISSN: 0890-5401

DOI: 10.1006/inco.1996.0093